Chemical modification in situ of Escherichia coli 30 S ribosomal proteins by the site-specific reagent pyridoxal phosphate. Inactivation of the aminoacyl-tRNA and mRNA binding sites.
نویسندگان
چکیده
epsilon-Amino groups of lysines of 30 S ribosomal subunits with affinity for phosphate groups were selectively modified in situ by reaction with pyridoxal phosphate and reduction of the Schiff base with nonradioactive or radioactive sodium borohydride. This reaction modified only a limited number of ribosomal proteins and resulted in the loss of only some 30 S activities. The modified proteins were identified and the extent of their modification determined. The main targets of the reaction were S3 greater than S1 greater than S6. The activity most severely affected by the pyridoxal phosphate reaction was mRNA-dependent aminoacyl-tRNA binding. Some inhibition of poly(U) binding was also observed, while neither binding of initiation factors nor association with 50 S subunits was inhibited. The inhibition of aminoacyl-tRNA binding showed distinct selectivity: the inhibition was far greater with NAcPhe-tRNA than with fMet-tRNA and with "A" site than with "P" site binding. In addition, initiation complex formation with some mRNAs (e.g. MS2 RNA) was affected more than with others (e.g. T7 early mRNA). Ribosome reconstitution experiments showed that the modification of protein S3 was the primary cause of the inhibition; a role was also played by ribosomal proteins S1, S2, and S21. Substrate protection experiments showed that the 30 S activity can be protected from pyridoxal phosphate inactivation upon formation of a ternary complex with poly(U) and tRNAPhe or NAcPhe-tRNAPhe. Accordingly, the extent of modification of ribosomal protein S3 was reduced in the ternary complex while modification of S1 was reduced in the presence of poly(U) alone.
منابع مشابه
A photoaffinity labelling study of the messenger RNA-binding region of Escherichia coli ribosomes.
A photoaffinity labelling study of the messenger RNA-binding region of E. coli ribosomes has been made, using oligoadenylic acids as mRNA analogs. The oligonucleotides, of chain length 6 to 8 and thus several nucleotides longer than oligonucleotides previously employed for this purpose, carried a radioactive photolabile aromatic azide reagent bound covalently to the 3'-terminal ribose moiety. T...
متن کاملChemical modification study of aminoacyl-tRNA conformation.
Chemical reactivity of cytosines in 32P-labeled E. coli tRNA1Leu, E. coli tRNAPhe and yeast tRNAPhe before and after aminoacylation was examined by use of a cytosine-specific reagent, semicarbazide-bisulfite mixture. In all the three tRNA species examined, the cytosine residues that were susceptible to the modification were the same in the aminoacylated tRNA and the unacylated tRNA. Only a limi...
متن کاملLabeling of specific lysine residues at the active site of glutamine synthetase.
Glutamine synthetase (Escherichia coli) was incubated with three different reagents that react with lysine residues, viz. pyridoxal phosphate, 5'-p-fluorosulfonylbenzoyladenosine, and thiourea dioxide. The latter reagent reacts with the epsilon-nitrogen of lysine to produce homoarginine as shown by amino acid analysis, nmr, and mass spectral analysis of the products. A variety of differential l...
متن کامل23S rRNA positions essential for tRNA binding in ribosomal functional sites.
rRNA plays an important role in function of peptidyl transferase, the catalytic center of the ribosome responsible for the peptide bond formation. Proper placement of the peptidyl transferase substrates, peptidyl-tRNA and aminoacyl-tRNA, is essential for catalysis of the transpeptidation reaction and protein synthesis. In this report, we define a small set of rRNA nucleotides that are most like...
متن کاملD-Serine dehydratase from Escherichia coli. Essential arginine residue at the pyridoxal 5'-phosphate binding site.
D-Serine apodehydratase from Escherichia coli is rapidly inactivated by butanedione in K+ borate buffer or by phenylglyoxal in K+ phosphate buffer at pH 8, 25 degrees. Pyridoxal-P protects against the inactivation. Modification of the apoenzyme abolishes its ability to bind the cofactor, pyridoxal-P, but the apparent Km for the substrate, D-serine, is not altered. The concentration dependence o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 258 1 شماره
صفحات -
تاریخ انتشار 1983